
Guardian of the Ensembles: Introducing Pairwise Adversarially Robust Loss for
Resisting Adversarial Attacks in DNN Ensembles

Shubhi Shukla1, Subhadeep Dalui2, Manaar Alam3, Shubhajit Datta4,
Arijit Mondal5, Debdeep Mukhopadhyay2, Partha Pratim Chakrabarti2

1Centre for Computational and Data Sciences, IIT Kharagpur, India
2Computer Science and Engineering Department, IIT Kharagpur, India

3Center for Cyber Security, New York University Abu Dhabi, UAE
4Department of Artificial Intelligence, IIT Kharagpur, India

5Computer Science and Engineering Department, IIT Patna, India
{shubhishukla, csesubhadeep2022}@kgpian.iitkgp.ac.in, alam.manaar@nyu.edu,

shubhajitdatta1988@gmail.com, arijit@iitp.ac.in, {debdeep, ppchak}@cse.iitkgp.ac.in

Abstract

Adversarial attacks rely on transferability, where an ad-
versarial example (AE) crafted on a surrogate classifier
tends to mislead a target classifier. Recent ensemble meth-
ods demonstrate that AEs are less likely to mislead multi-
ple classifiers in an ensemble. This paper proposes a new
ensemble training using a Pairwise Adversarially Robust
Loss (PARL) that by construction produces an ensemble
of classifiers with diverse decision boundaries. PARL uti-
lizes outputs and gradients of each layer with respect to
network parameters in every classifier within the ensemble
simultaneously. PARL is demonstrated to achieve higher
robustness against black-box transfer attacks than previous
ensemble methods as well as adversarial training without
adversely affecting clean example accuracy. Extensive ex-
periments using standard Resnet20, WideResnet28-10 clas-
sifiers demonstrate the robustness of PARL against state-
of-the-art adversarial attacks. While maintaining similar
clean accuracy and lesser training time, the proposed archi-
tecture has a 24.8% increase in robust accuracy (ϵ = 0.07)
from the state-of-the art method. Code is available at:
https://github.com/shubhishukla10/PARL

1. Introduction

While Deep Learning (DL) models are extremely
efficient in solving complicated decision-making tasks,
they are vulnerable to well-crafted Adversarial Examples
(AE) [18]. The widely-studied phenomenon of AE has pro-
duced numerous attacks with varied complexities and ef-
fective deceiving strategies [6]. An extensive spectrum of

defenses against such attacks has also been proposed in the
literature [6], which generally falls into two categories. The
first category enhances the training strategy of DL models
to make them less vulnerable to AE [9, 16]. However, it
has been demonstrated that these defenses are not general-
ized for all varieties of AE but are constrained to specific
categories [2, 5]. The second category intends to detect AE
by simply flagging them [12, 14]. However, it has been il-
lustrated with several experiments that these detection tech-
niques could be efficiently bypassed by a strong adversary
having partial or complete knowledge of the internal work-
ing procedure [4].

While the approaches mentioned above deal with stan-
dalone models, in this paper, we utilize an ensemble of mod-
els to resist adversarial examples (AE). The notion of using
diverse ensembles to increase robustness against AE has
recently gained popularity [25]. The primary motivation
for using an ensemble-based defense with diverse decision
boundaries is that if multiple models with similar decision
boundaries perform the same task, the transferability prop-
erty of deep learning models makes it easier for an adver-
sary to misclassify all the models simultaneously using AE
crafted on any of the models. However, it will be difficult
for an adversary to misclassify multiple models simultane-
ously if they have diverse decision boundaries.
Related Works: Ensemble-based Adversarial Defense:

[17] introduced ensemble-based defense against AE us-
ing various ad-hoc techniques such as different random
initializations, different neural network structures, bagging
the input data, and adding Gaussian noise while training.
[19] proposed Ensemble Adversarial Training that incor-
porates perturbed inputs transferred from other pre-trained
models during adversarial training to decouple AE gen-
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Figure 1. (a) Input image; (b) ∇prim: Gradient of loss in the primary
model; (c) ∇sim: Gradient of loss in another model with similar decision
boundaries; (d) ∇div : Gradient of loss in a model with not so similar de-
cision boundaries but comparable accuracy; (e) Symbolic directions of all
the gradients in higher dimensions. Gradients are computed with respect
to the image shown in (a).

eration from the parameters of primary model. However,
these methods do not explicitly focus on incorporating di-
versity in the decision boundaries of the models within
an ensemble. [10] proposed Diversity Training of an en-
semble of models with uncorrelated loss functions using
Gradient Alignment Loss (GAL) to reduce the dimension
of adversarial sub-space shared between different mod-
els and increase the robustness of the classification task.
[15] proposed Adaptive Diversity Promoting (ADP) regu-
larizer to train an ensemble of models that encourages the
non-maximal predictions in each member in the ensemble
to be mutually orthogonal, degenerating the transferabil-
ity that aids in resisting AE. [22] proposed a methodology,
called DVERGE, that isolates the adversarial vulnerability
in each model of an ensemble by distilling non-robust in-
put features. [23] proposed Transferability Reduced Smooth
(TRS) ensemble that enforces diversity among the models
within an ensemble by simultaneously reducing loss gradi-
ent and smoothing decision regions using support instances
as regularizers. Recently, [3] proposed Ensemble-in-One
(EIO), method which works by using a random gated net-
work to exponentially increase the number of paths for en-
semble learning within a single model, resulting in better
adversarial robustness.

The methods mentioned above either do not inherently
enforce diversity on decision boundaries of the models or
are less robust against stronger adversaries, significantly
impacting clean example accuracy. In this work, we propose
a systematic approach that incorporates diversity among
decision boundaries of submodels in an ensemble to en-
hance robustness against adversarial examples (AE). This
diversity is achieved by considering mutual dissimilarity in
gradients of each layer with respect to intermediate network
parameters and the output of intermediate convolution lay-
ers during training. Such diversity reduces the transferabil-
ity of AE within the ensemble.
Intuition behind the Proposed Approach:

The first part our proposed ensemble loss method aims
to diversify classifiers by making their gradients dissimi-
lar/orthogonal. We illustrate this with an example of image
classifiers trained on CIFAR-10, shown in Fig. 1.

Fig. 1a shows an input image of a ‘frog’ which we use to
demonstrate how gradient of loss with respect to intermedi-

ate convolution layer parameters is visualized in classifiers
Mprim and Msim, which have similar decision bound-
aries, and in Mdiv , which has a distinctly different decision
boundary from Mprim. Although Mprim and Msim are
trained under the same settings but with different initializa-
tions, their gradients, ∇prim (Fig. 1b) and ∇sim (Fig. 1c),
tend to point in nearly the same directions as shown in
Fig. 1e. In contrast, the gradient of Mdiv , ∇div (Fig. 1d),
significantly diverges. This indicates that adversarial ex-
amples crafted for Mprim can easily fool Msim but are
less likely to affect Mdiv , highlighting the impact of de-
cision boundary diversity on adversarial example transfer-
ability. Focusing on gradients relative to intermediate layer
weights rather than just the input delves deeper into the neu-
ral network’s learning process. This helps in targeting the
core of the classifiers’ feature extraction and representation
mechanisms. Early and intermediate convolutional layers
are where raw input data begins its transformation into a
hierarchy of features, which are then used for classifica-
tion. By promoting orthogonal gradients in these layers,
we ensure that each classifier within the ensemble develops
a unique approach to processing and interpreting the input
data, leading to diverse feature representations.

Building on the gradient diversity objective, our ensem-
ble loss method aims to further diversify internal represen-
tations by minimizing the correlation between outputs of
intermediate convolutional layers across classifiers. Unlike
cosine similarity, which encourages gradient orthogonality,
correlation is used here to assess similarity between inter-
mediate layer outputs. This is because convolutional layers
capture spatial hierarchies of features where both activation
patterns (direction) and intensities (magnitude) are crucial.
Correlation accounts for both aspects, providing a compre-
hensive measure of similarity and ensuring each classifier
uniquely contributes to the ensemble, thus increasing ro-
bustness against adversarial attacks. Fig.2 illustrates this
with an input image labeled as ‘Deer’ from CIFAR-10, pro-
cessed by four CNN classifiers. The first two classifiers,
trained identically but with different initializations, produce
similar outputs (Fig.2b and Fig.2c). The latter two classi-
fiers, specifically trained for distinct representations, show
significantly different outputs (Fig.2d and Fig. 2e), demon-
strating enforced diversity.

Our method is among the first to encourage diversity at
both the decision boundary and intermediate representation
levels. This novel approach ensures a more robust model
compared to previous adversarial ensemble defenses by di-
versifying the potential paths an adversarial input might
take, making it harder for such attacks to succeed.
Contributions: We summarize our contributions below:

• We propose a method that, by construction, increases
diversity in the decision boundaries among all the
models within an ensemble to degrade the transferabil-
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(a) (b) (c) (d) (e)
Figure 2. (a) Input image; (b) and (c) Similar outputs of an intermediate
convolution layer of two classifiers with similar internal representations;
(d) and (e) Contrasting outputs of an intermediate convolution layer of
two classifiers which are trained simultaneously to have distinct internal
representations

ity of AE.

• We propose a Pairwise Adversarially Robust Loss
(PARL) function by utilizing outputs and gradients of
each layer of every model within the ensemble simul-
taneously while training to produce such varying deci-
sion boundaries.

• PARL significantly improves the overall robustness of
an ensemble against black-box transfer attacks without
substantially impacting the clean example accuracy.

We evaluated PARL extensively using CIFAR-10,
CIFAR-100, and Tiny Imagenet datasets with Resnet20 and
WideResnet28-10 architectures against state-of-the-art ad-
versarial attacks such as PGD [13], M-DI2-FGSM [21],
SGM [20], and Square [1]. We compared PARL with pre-
vious ensemble adversarial defenses and the recent adver-
sarial training method TRADES. At the highest perturbation
strength of 0.07, PARL achieved a robust accuracy surpass-
ing the state-of-the-art ensemble defense by 24.8%, with
nearly one-third of the training time and similar clean accu-
racy for the CIFAR-10 Resnet20 model. Additionally, com-
pared to TRADES, PARL showed similar robust accuracy
and 3.68% higher clean accuracy, offering a better balance
of security and utility.

2. Building Ensemble Networks using PARL
Threat Model: We define our threat model for generating
AE in the context of a Zero Knowledge Adversary. This ad-
versary lacks access to the target ensemble MT , but pos-
sesses knowledge of a surrogate ensemble MS that has
been trained using the same dataset. Also known as a black-
box adversary, the adversary formulates AE on the source
model MS and subsequently transfers them to the target
model MT .
Overview of PARL: Consider an ensemble MT consisting
of N neural networks and denoted as MT =

⋃N
i=1 Mi,

where Mi is the ith network in the ensemble. All Mi’s are
trained simultaneously using PARL, which we subsequently
discuss in detail. The final decision for an input on MT is
decided over majority voting among all Mi’s. Formally, as-
sume a test set of t inputs {x1,x2, . . . ,xt} with respective
ground truth labels as {y1,y2, . . . ,yt}. The final decision
of MT for an input xj is defined as

C(MT ,xj) = majority{M1(xj),M2(xj), · · · ,MN (xj)}

C(MT ,xj) = yj for most xj’s in an appropriately trained
MT . The primary argument behind PARL is that all Mi’s
have dissimilar decision boundaries but not significantly
different accuracies. Hence, a clean example classified as
class Cx in Mi will also be classified as Cx in most other
Mj’s (where j = 1 . . .N , j ̸= i) with a high probabil-
ity. Consequently, due to the diversity in decision bound-
aries between Mi and Mj (for i, j = 1 . . .N and i ̸= j),
the AE generated for a surrogate ensemble MS will have
a different impact on each classifiers within MT , i.e., the
transferability of AE will be challenging within the ensem-
ble. The adversary can also generate AE for MT . However,
the input image perturbation will be in different directions
due to the diversity in decision boundaries among all Mi’s.
The collective disparity in perturbation directions makes it
challenging to craft AE for the ensemble.
Basic Terminologies used in PARL: We assume that each
Mi in MT has the same architecture with H hidden lay-
ers. Let JMi

(x,y) be the loss function for the network Mi

considering a data point x, where y is the ground-truth la-
bel for x. Let Fk

i (x) be the output of kth hidden layer of
Mi for input x and let wk

i denote all network parameters
up to kth hidden layer which are involved in computation
of Fk

i (x). Let us consider Fk
i (x) has Dk number of output

features. Let ∇wk
i
Fk

i (x) denote the sum of gradients over
each output feature of kth hidden layer with respect to the
parameters represented by wk

i on the network Mi for data
point x. Hence, ∇wkiFki(x) =

∑Dk
f=1 ∇wki[Fki(x)]f

where ∇wk
i
[Fk

i (·)]f is gradient of f th output feature of kth

hidden layer on network Mi with respect to the parameters
represented by wk

i for data point x. Let X be the training
dataset with |X | examples.
PARL Construction: The main idea behind PARL is to
train an ensemble of neural networks with diverse deci-
sion boundaries. To achieve such diversity the parameters
in each network which are learned during training must be
dissimilar across the ensemble. In this paper, we introduce
PARL to train an ensemble so that the gradients of loss with
respect to the network parameters lead to different direc-
tions in different networks for the same input. The gradi-
ents guide training of any neural network by giving an idea
of the direction in which the parameters should be updated.
Hence, the fundamental strategy is to make these gradients
as dissimilar as possible while training all the networks si-
multaneously. The loss is computed using the output of the
last layer and ground truth label. However, the last layer
output depends on all intermediate layers’ outputs. There-
fore, loss and so its gradient both depend on the interme-
diate layers’ outputs. As a result, employing diversity in
intermediate layers will also enforce diversity in the model
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decision boundary. Hence, instead of loss, we considered
the output of intermediate layers for implementing diver-
sity with a higher degree of control and better flexibility in
employing constraints. Recognizing that gradient computa-
tion hinges on all intermediate parameters within a network,
we bring into play a strategy to not only make the gradi-
ents dissimilar but also to influence the intermediate layers
of all networks within the ensemble. We aim to minimize
the correlation between the outputs of the hidden layers,
instigating enhanced diversity at each layer. This twofold
approach of reducing correlation and enhancing diversity
not only ensures different gradient paths but also fortifies
the robustness of the ensemble to adversarial perturbations.
Consequently, the PARL framework presents a more potent
defense against adversarial examples.

The pairwise similarity of gradients of the output of the
kth hidden layer with respect to the parameters between Mi

and Mj for a particular data point x can be represented as

G(i,j)
k (x) = cos θi,j(x) =

⟨∇wk
i
Fk

i (x),∇wk
j
Fk

j (x)⟩

|∇wk
i
Fk

i (x)| · |∇wk
j
Fk

j (x)|

where ⟨a, b⟩ represents the dot product between two vectors
a and b, and cos θi,j(x) represents the cosine of the angle
between two vectors. The overall pairwise similarity be-
tween Mi and Mj for x considering H hidden layers is
given as G(i,j)(x) =

∑H
k=1 G

(i,j)
k (x)

Additionally, we utilize intermediate outputs of the con-
volution layers to further diversify the decision boundaries.
For this we define the pairwise similarity of outputs of the
kth hidden layer with respect to input between Mi and Mj

for a particular data point x as

L(i,j)
k (x) = ρ(Fk

i (x),Fk
j (x)) =

cov(Fk
i (x),Fk

j (x))

σFk
i (x)σFk

j (x)

where L(i,j)
k (x) is the Pearson correlation between

Fk
i (x) and Fk

j (x), ρ is the Pearson correlation function,
cov(Fk

i (x), Fk
j (x)) denotes the covariance between out-

puts of Fk
i (x) and Fk

j (x), σFk
i (x) and σFk

j (x) denote the
standard deviations of the sub-model outputs respectively.
We define: L(i,j)(x) =

∑H
k=1 L

(i,j)
k (x)

Next, we define a penalty term R(Mi,Mj) for all training
examples in X to pairwise train Mi and Mj as

R(Mi,Mj) =
1

|X | · |H|
∑
x∈X

(
G(i,j)(x) · L(i,j)(x

)
Here, the rationale behind multiplying the terms G and L

lies in creating an interdependent relationship between the
diversity of learning trajectories (as encouraged by gradi-
ent orthogonality) and the diversity of internal feature rep-
resentations across the classifiers. By this design, a clas-
sifier’s contribution to the ensemble’s robustness is maxi-
mized only when it exhibits both gradient diversity and di-
verse feature representation simultaneously. This further

ensures that the classifiers do not lean towards optimizing
one aspect of diversity at the expense of the other.

We add R to training loss as a penalty parameter to pe-
nalize training for a large R. R computes average pairwise
similarity for all training examples. R will gradually de-
crease as relative angles between the pair of gradients in-
creases in higher dimension. Hence, the objective of PARL
is to reduce R. Thus, we add R to training loss as a penalty
parameter to penalize training for a large R.

In ensemble MT , we compute R for each distinct pair
of Mi and Mj in order to enforce diversity between each
pair of classifiers. We define PARL to train MT as

PARL(MT ) =
1

|X |
∑
x∈X

N∑
i=1

JMi(x,y)

+ γ ·
∑

1≤i<j≤N

R(Mi,Mj)

(1)

where γ is a hyperparameter controlling the accuracy-
robustness trade-off. A lower γ enhances clean accuracy
during ensemble training but reduces AE robustness. Con-
versely, a higher γ boosts AE robustness while potentially
sacrificing overall accuracy.

One may note that including a penalty for each distinct
pair of classifiers within MT to compute PARL has one
fundamental advantage. If we omit the pair (Ma,Mb) in
PARL computation, training will continue without any di-
versity restrictions between them. Consequently, producing
similar decision boundaries that increase the likelihood of
adversarial transferability between them, affecting the over-
all robustness of MT . One may also note that in an efficient
implementation of PARL one needs a single forward pass to
get all the hidden layer outputs. Additionally, the number of
gradient computations (backward pass) is directly propor-
tional to the number of classifiers in MT . The gradients for
each classifier are computed once and are reused to compute
R for each pair of classifiers. Reusing gradients protects
the implementation from exponential computational over-
head. Moreover, the complexity of gradient computation of
PARL mostly depends on the architectural depth of neural
networks. Given a fixed architecture, the training complex-
ity of PARL grows linearly with the number of training ex-
amples. Hence, PARL is applicable to any dataset without
adversely affecting the original training time.

3. Experimental Evaluation

Evaluation Configurations: We consider two standard
architectures Resnet20 and WideResnet28-10 for creating
our ensembles. Each ensemble is a set of three sub-
models of the same architecure1. We consider CIFAR-
10 and CIFAR-100, standard image classification datasets
for our evaluation. We consider four previously proposed

1We select 3 sub-models to compare PARL with related methods, most
of which use 3 sub-models. PARL is scalable for larger ensemble sizes.
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Figure 3. Layer-wise linear CKA values between each pair of models
trained with CIFAR-10 on (a) Resnet20 and (b) WideResnet28-10 showing
the similarities at each layer.

countermeasures to compare the performance of PARL. We
denote ENSADP , ENSGAL, ENSTRS , ENSDVERGE ,
and ENSEIO to be the ensembles trained with the meth-
ods proposed in [15], [10], [22], [23], and [3], respectively.
The ensemble trained with PARL is denoted as ENSPARL.
ENSU is the baseline ensemble model.

We use Adam optimization to train all the ensembles with
adaptive learning rate starting from 0.001. We dynamically
generate an augmented dataset using random shifts, flips
and crops to train both CIFAR-10 and CIFAR-100. We
use γ = 0.25 as it provided best clean and robust accu-
racy trade-off (cf. Sec. 3.2), and categorical crossentropy
loss for JMi

(·) for ENSPARL (ref. Equation (1)). All
ensembles are trained using two GPU servers: Intel Xeon
CPU@2.30GHz with 16GB NVIDIA Tesla P100 GPU and
Intel Xeon CPU@2.40GHz with 48GB NVIDIA A40.

We evaluate PARL, considering the same attacks as most
recent defense EIO [3]. For black-box transfer attack, we
use the following attacks: (1) PGD with momentum and
three random starts [13]; (2) M-DI2-FGSM [21]; and (3)
SGM [20]. The iterative steps are set to 100 with step size
of ϵ/5. We use ϵ = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}
for generating AE of different strengths2. We report the ro-
bust accuracy in all-or-nothing manner, meaning a sample is
said to be correctly classified if all of its adversarial samples
using different attack methods are correctly classified.
Analysing the Diversity: PARL aims to increase the di-
versity among all classifiers within an ensemble. To analyze
the diversity of different classifiers trained using PARL, we
use Linear Central Kernel Alignment (CKA) analysis [11].
The CKA metric ∈ [0, 1] measures similarity between deci-
sion boundaries represented by a pair of neural networks.
A higher CKA indicates a significant similarity in deci-
sion boundary representations, which implies good trans-

2We use majority voting as final ensemble decision for PARL. Hence,
we use majority attack [8] for all adversarial attacks on PARL ensembles.

ferability of AE. We present an analysis on layer-wise CKA
for each pair of classifiers within ENSU and ENSPARL

trained with CIFAR-10 on Resnet20 and WideResnet28-
10 architectures in Fig. 3 to show the effect of PARL on
diversity. We enforce diversity among all classifiers in
ENSPARL for the first six convolution layers. We chose
six layers as it provides better robust accuracy compared to
other number of layers as shown in next subsection. We
highlight the selected convolution layers for PARL in blue.
There are intermediate layers between convolution layers as
well such as batch-normalization and activation function.

We observe that each pair of models in ENSU show
a significant similarity at each layer. However, since
ENSPARL restricts the first six convolution layers, we ob-
serve a notable decline in CKA values at initial layers. The
observation is expected as PARL imposes layer-wise diver-
sity in its formulation. The overall average Linear CKA
values between each pair of models in Fig. 3 are mentioned
inside brackets within corresponding figure legends, which
signifies that the classifiers within an ensemble trained us-
ing PARL shows a higher overall dissimilarity than the un-
protected baseline ensemble. Next, we analyze the effect of
observed diversity on the performance of ENSPARL.

3.1. Robustness Evaluation
The attacker cannot access the model parameters and

rely on surrogate models to generate transferable AE. Un-
der such a black-box scenario, we use one hold-out en-
semble with three Resnet20 architectures as the surrogate
model. We randomly select 1000 test samples and eval-
uate the performance of black-box transfer attacks for all
ensembles across a wide range of attack strength ϵ. We
give a detailed performance evaluation considering multi-
ple attack strengths for CIFAR-10 and CIFAR-100 dataset
in Fig. 4a and Fig. 4b respectively. To avoid confusion with
nomenclature of other ensemble defenses, ENSPARL/3/4,
ENSPARL/3/5 and ENSPARL/3/6 indicates an ensemble
of 3 classifiers with 4, 5 and 6 initial convolution layers
modified with the PARL loss respectively. On the CIFAR-
10 dataset, we note some key observations. The model
ENSPARL/3/6 with a clean accuracy of 85.09% performs
the best among all the previous ensemble defense methods.
It is to be noted, for ϵ = 0.07, ENSPARL/3/6 has a ro-
bust accuracy of 64.6%, which is 42.6% higher than the
previous state-of-the-art defense ENSEIO, but has drop of
5% clean accuracy. On the other hand ENSPARL/3/5 and
ENSPARL/3/4 show an increase of 28.7% and 24.8% ro-
bust accuracy for ϵ = 0.07 with just 3.3% and 2% drop
in clean accuracy compare to ENSEIO. For the CIFAR-
100 dataset, PARL surpasses state-of-the-art method both
in terms of robust as well as clean accuracy. These re-
sults suggest that, based on the desired robustness level,
a model architect can adjust the number of layers influ-
enced by the PARL loss function. This fine-tuning enables
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Figure 4. Resnet20 Ensemble classification accuracy (%) vs. Attack
Strength (ϵ) against black-box transfer attacks generated from surrogate
ensemble with (a) CIFAR-10 and (b) CIFAR-100 dataset

achieving the desired defense against adversarial attacks,
with only minor trade-offs in clean accuracy. PARL primar-
ily focuses on defending against black-box transfer attacks.
These adversaries can craft adversarial examples using the
complete network parameters, although such scenarios are
rarely practical in real-world applications where only API
based query access is provided for the target model.
Performance evaluation against Query-based black-box
attack: In a query-based adversarial attack, the attacker
crafts adversarial examples by analyzing the responses from
the target machine learning model, to which they have only
black-box access. Our assessment of PARL involves its per-
formance against a specific query-based black-box adver-
sarial attack known as the Square Attack [1]). This attack
method is notable for its ability to efficiently modify a min-
imal number of pixels within a square area of an image,
effectively deceiving machine learning models while main-
taining the overall visual integrity of the image. The Square
Attack is unique in the AutoAttack suite [7], which com-
prises four different methods of adversarial attacks used for
thorough model evaluation, with Square Attack being the
sole black-box method.

In Fig. 5a, we illustrate the outcomes of using the Square
Attack on PARL. For this experiment, we used the default
maximum queries and square size settings, which are 5000
and 0.8, respectively and considered 1000 test images. We
found that ensembles of Resnet20 and WideResnet28-10
trained with PARL outperformed the surrogate model. Ad-
ditionally, we calculated the average number of queries uti-
lized across all test images and specifically for those im-
ages which were successfully misclassified by the ensem-
ble. Our findings, displayed in Fig. 5b, indicate that all
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Figure 5. (a) Resnet20 (RN20) and WideResnet28-10 (WRN28-10) En-
semble classification accuracy (%) vs. Attack Strength (ϵ) against Square
attack for CIFAR-10 (b) Average number of queries required for square at-
tack for all samples as well as successful (succ) attack samples with RN20

models trained with PARL required over twice the number
of queries compared to the surrogate model for all levels of
perturbation, except at 0.01, where the requirement was ap-
proximately 1.5 times higher. PARL’s ability to require sig-
nificantly more queries for successful adversarial attacks,
especially in comparison to the surrogate model, demon-
strates its robustness in less query-restrictive environments.
Performance comparison with Adversarial Training:
We evaluate the performance of the PARL model in com-
parison with the adversarial training method TRADES [24].
The TRADES loss function is defined as:

LTRADES(x, y) = L(x, y) + β · L(x+ δ, y) (2)

where, x is the natural input and y is its corresponding la-
bel. L(x, y) is the natural loss representing the model’s
prediction error on the clean data. δ represents the ad-
versarial perturbation, typically computed using methods
like PGD. L(x + δ, y) is the adversarial loss, emphasiz-
ing correct classification of adversarial examples. β is a
hyperparameter that balances the contributions of the two
terms. This approach differs from standard adversarial
training which often seeks to minimize the adversarial loss
L(x + δ, y) alone. By combining both the natural and ad-
versarial losses, TRADES ensures robustness against ad-
versarial attacks while maintaining performance on clean
examples. We assume the default β value of 6 for our ex-
periments. In Fig. 6a and Fig. 6b we show the comparison
of three adversarially trained TRADES Resnet20 ensemble
models ENSTRADES/3/0.01, ENSTRADES/3/0.02 and
ENSTRADES/3/0.03 (trained with different PGD attack
perturbations ϵ = 0.01, 0.02, 0.03) against ENSPARL/3/4,
ENSPARL/3/5 and ENSPARL/3/6 for CIFAR-10 and
CIFAR-100 respectively. For CIFAR-10, we observe that at
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Figure 6. Resnet20 Ensemble classification accuracy (%) vs. Attack
Strength (ϵ) against black-box transfer attacks generated from surrogate
ensemble for (a) CIFAR-10 and (b) CIFAR-100

ϵ = 0.07 ENSPARL/3/6 gives only 5.5% less robust accu-
racy than ENSTRADES/3/0.02 and ENSTRADES/3/0.03

with clean accuracy 5.97% and 8.17% higher than them
respectively. Additionally, it gives same robust accuracy
as ENSTRADES/3/0.01 with 3.68% higher clean accuracy.
We observe similar trends in the results for the CIFAR-100
dataset as well. In conclusion, PARL stands out as a pre-
ferred defense strategy against adversarial attacks on en-
sembles, offering similar or slightly lower robust accuracy
compared to TRADES but with significantly higher clean
accuracy, all achieved in less than one-third of TRADES’s
training time (cf. Sec. 3.2).
Table 1. Resnet20 Ensemble clean and robust (ϵ = 0.01) classification
accuracy on Tiny Imagenet Dataset

Model Clean Accuracy Robust Accuracy
ENSU 60.85% 17.8%

ENSEIO 57.33% 8.6%
ENSTRADES/3/0.01 44.32% 27.7%

ENSPARL/3/4 55.95% 28.3%
ENSPARL+TRADES 42% 35.6%

Performance evaluation on Tiny Imagenet Dataset: We
evaluated PARL on the Tiny Imagenet dataset, which con-
tains 200 classes. Table 1 presents the clean and ro-
bust accuracy results for EIO, TRADES, PARL, and a
combination of PARL and TRADES. The state-of-the-
art method ENSEIO underperformed, with both robust
and clean accuracy falling below the baseline ensemble3.
While ENSTRADES/3/0.01 and ENSPARL/3/4 showed
similar robust accuracy, ENSPARL/3/4 achieved better
clean accuracy. Additionally, we also combined PARL and
TRADES losses and observed an improvement in robust ac-
curacy by nearly 7%, but clean accuracy dropped to 42%.
Hence overall, in terms of clean accuracy and robust accu-
racy trade-off PARL performs the best among all methods.
Overall, PARL offers the best trade-off between clean and
robust accuracy among all methods tested.

3We used the open-source code provided with the EIO paper and re-
ported all results based on runs using the default configuration described
in the paper.

3.2. Ablation Study
In our previous evaluations, we train ENSPARL by en-

forcing diversity in the first four, five and six convolution
layers for all classifiers. Next, we provide an ablation study
by analyzing a varying number of convolution layers con-
sidered for diversity training. We consider three ensembles,
ENSPARL/3/4, ENSPARL/3/5, and ENSPARL/3/6, for
this study. Accuracies of all ensembles on clean exam-
ples for Resnet20 and WideResnet28-10 are mentioned in
Table 2. We observe that as fewer restrictions are im-
posed, overall ensemble accuracy increases, which is ex-
pected and can be followed from Equation (1). We also
present a layer-wise CKA analysis for each pair of clas-
sifiers within ENSPARL/3/5 and ENSPARL/3/6, trained
with CIFAR-10. The layer-wise CKA values are shown in
Fig. 7 to exhibit the effect of PARL on diversity. We ob-
serve a decline in the CKA values for more layers in case
of ENSPARL/3/6 compared to ENSPARL/3/5, which is
expected as ENSPARL/3/6 is trained by restricting more
convolution layers. We also observe that each pair of clas-
sifiers show more overall diversity in ENSPARL/3/6 than
in ENSPARL/3/5. The overall average of CKA values are
mentioned inside braces within figure legends.
Table 2. Ensemble classification accuracy (%) for Resnet20 and
WideResnet28-10 on CIFAR-10 and CIFAR-100 clean examples.

Model Dataset ENSPARL/3/4 ENSPARL/3/5 ENSPARL/3/6

Resnet20 CIFAR-10 88.53 87.49 85.79
CIFAR-100 60.73 59.37 56.68

WideResnet28-10 CIFAR-10 92.86 92.31 91.98
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Figure 7. Layer-wise linear CKA values between each pair of PARL/3/5
and PARL/3/6 models trained with CIFAR-10 on Resnet20 showing the
diversity at each layer.

Contribution of correlation term: In the defined PARL
loss function (see Equation 1), we incorporate a penalty
term that combines the cosine similarities of gradients with
the correlation of outputs from distinct sub-model pairs at
specific convolution layers. Fig. 8a illustrates the vari-
ance in PARL’s robustness when the penalty term solely re-
lies on the cosine similarities between gradients, excluding
the output correlations (ENSPARL/3/N/GradOnly). While
ENSPARL/3/N/GradOnly models do show improvements
over ENSU , it’s evident that ENSPARL/3/N models are
superior, emphasizing the critical role of both gradient sim-
ilarity and output correlation in the penalty term.
Selection of γ: In PARL Equation 1, γ is used for the
purpose of regulating the PARL penalty term. We experi-
mented with varying γ values, focusing on their effect on
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Figure 8. (a) Comparing PARL robustness against PARL loss with
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Figure 9. Resnet20 Ensemble classification accuracy (%) vs. Attack
Strength (ϵ) for CIFAR-10 with increased number or classifiers

the model’s clean and robust accuracies. The findings for
Resnet-20 ENSPARL/3/5, illustrated in Fig. 8b, reveal
that while accuracy fluctuations are minimal across differ-
ent perturbations, lower γ values tend to enhance clean ac-
curacy, whereas higher γ values improve robust accuracy.
For γ = 1, we obtain a clean accuracy of 86.42% and robust
accuracy of 54.9% at ϵ = 0.07, whereas we for γ = 0.25 we
obtain increased clean accuracy of 87.49%, and decreased
robust accuracy of 50.7%. For our experiments, we selected
γ = 0.25 as it offers the best trade-off between clean and
robust accuracy.
Increased number of classifiers: In Fig. 9, we present
results obtained by increasing the number of classifiers from
three to four. We observe that robust accuracy improves
by 10.3% for ENSPARL/4/5 compared to ENSPARL/3/5

with ϵ = 0.07, with 28.8% more training time, as discussed
next. We opt for three classifiers throughout the paper as a
trade-off between robust accuracy and train time.
Training time overhead: In Table 3 we give training
time per epoch for the Resnet20 surrogate, PARL, EIO
and TRADES models. Earlier we compared PARL with
TRADES and observed that PARL gives similar or slightly
lesser robust accuracy than TRADES but in trade-off pro-
vides much higher clean accuracy as well. TRADES also
takes 3x more training time than the most computationally
expensive ENSPARL/3/6 among all PARL models and 12x
compared to the surrogate model. Additionally, ENSEIO

takes 7x training time compared to surrogate model and
3x compared to ENSPARL/3/4 which gives similar clean
accuracy and much higher robust accuracy compared to

Table 3. Training time (sec/epoch) for CIFAR-10.

Model Training Time Model Training Time

ENSU 30 ENSPARL/3/5 90
ENSEIO 210 ENSPARL/3/6 120

ENSTRADES 370 ENSPARL/4/5 116
ENSPARL/3/4 65

ENSEIO. Lastly, we observe that increasing the number of
classifiers from three to four has minimal impact on training
time, as shown for ENSPARL/4/5 and ENSPARL/4/6.
Discussion: ADP forces different models in an ensemble to
have mutually orthogonal non-maximal predictions. GAL
reduces the dimension of adversarial sub-space shared be-
tween different models using uncorrelated loss functions.
These methods do not inherently enforce diversity on deci-
sion boundaries learned by the models. DVERGE diversi-
fies non-robust input features of models by performing ad-
versarial training, making it more robust against weak at-
tack strength and less robust against strong attack strength.
EIO leverages random gated networks to enhance adversar-
ial robustness by diversifying vulnerabilities across multiple
paths of CNNs but again has a higher training overhead. In
contrast, PARL, by construction, forces the models to have
high diversity in decision boundaries using all intermedi-
ate feature space. The diversity of models attained through
intermediate feature space (not limited to only non-robust
input features) makes PARL more robust, even for strong
attack strength. In addition, PARL produces robust ensem-
bles without substantially impacting clean example accu-
racy and training time.

4. Conclusion
This paper proposes a new approach that, by construc-

tion, produces an ensemble of neural networks with diverse
decision boundaries, making it robust against adversarial at-
tacks. The diversity is obtained through the proposed Pair-
wise Adversarially Robust Loss (PARL) function utilizing
the gradients and outputs of each layer in all the networks
simultaneously. Experimental results show that PARL can
significantly improve the overall robustness of an ensemble
in comparison to previous approaches against state-of-the-
art black-box transfer attacks as well as query-based black-
box attacks without substantially impacting clean example
accuracy. In particular, PARL achieves a 24.8% improve-
ment in robust accuracy over the leading ensemble defense
method EIO with highest perturbation strength. Further-
more, when compared to TRADES, PARL demonstrates
robust accuracy of similar order with a 3.68% increase in
clean accuracy. PARL also takes lesser training time com-
pared to both EIO and TRADES method.
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